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Abstract
On the basis of the linearized rate equations for hopping electrons in the presence
of Hubbard interaction we derive a random resistor network analogue of the
transport equations. In contrast to the ordinary Miller–Abraham network our
network has two nodes per site. The occurrence of the second node is related to
the capability of the system to propagate excitations, and thus is characteristic
for the interacting situation. Our random resistor network can be used for the
investigation of the transport properties in alternating electric fields and for the
investigation of properties of excitations. The network analogue is applied to
the calculation of the dynamical conductivity in the nearest-neighbour hopping
regime for all Hubbard-interaction strength.

1. Introduction

In recent years there has been increasing interest in the investigation of interaction effects
on conductivity in the hopping regime. As well as the long-range Coulomb interaction, the
impact of the Hubbard interaction has also received a lot of attention. The effects of Hubbard
interaction have recently been detected in magneto-resistance measurements in different
materials [1–7]. In the absence of spin–orbit scattering the consideration of the Hubbard
interaction leads to a positive magneto-resistance due to the Kamimura–Kurobe effect [8–11].
Spin–orbit scattering is expected to change this picture, and to result in an enhancement of
the conductivity due to an increase in the effective density of states [12]. The ε2-conduction,
which appears in a very narrow range of impurity concentration and compensation, is also
assumed to be caused by the impact of the Hubbard interaction [13].

From the theoretical point of view the physical picture in the presence of Hubbard
interaction is much more involved than for non-interacting electrons. The strong electron
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correlation between electrons on the same site leads naturally to the introduction of four types
of transition probabilities, since the charge carriers can jump from single or double occupied
sites to empty or single occupied sites [8, 15, 16]. This raises the question whether or not
the traditional methods for the calculation of the conductivity in the hopping regime, that is
either the percolation theory or effective medium methods, can also be used in the interacting
situation.

Since the percolation theory for the hopping conductivity is based on the notion that
the transport equations can be cast into the form of an equivalent random resistor network,
the answer to this question depends on the introduction of a suitable random resistor network.
While most authors agree that in the interacting situation percolation theory can also be applied
to the investigation of the hopping conductivity, there is no general answer to the question of
what the equivalent random resistor network looks like. While some authors use networks with
one node per site (see, e.g., [17]) other authors use networks with two nodes per site (see, e.g.,
[9, 15, 18]). It is unclear, however, whether or not these two approaches are equivalent to each
other. For finite frequencies no generalized random resistor networks have been published in
the literature so far.

For the effective medium theories the consideration of the Hubbard interaction also
represents a new challenge. Since in the interacting situation the state of each site has to
be characterized at least by two variables the transport equations become matrix equations,
which are more difficult to handle. Thus it is not surprising that only one effective medium
theory for such systems has been published so far [19]. In this theory the impact of the
Hubbard interaction reflects itself in four types of effective differential conductivity, which
have to be considered. On the other hand the number of fluctuating quantities in the presence
of the Hubbard interaction is the same as in the non-interacting situation, if fluctuations of
the Hubbard-interaction strength are ignored. This is especially apparent in the activated
transport regime. In this transport regime only the positions of the sites are considered as
disordered quantities. The spread of the site energies of the band of first occupied states is
ignored. If we assume that the system is strongly localized then the transitions mainly occur
between nearest neighbours. In this case there is only one fluctuating quantity, the distance
between the sites. The transport is characterized by a fixed percolation path, which does not
shift with temperature [20]. Thus, at least for the nearest-neighbour-hopping (NNH) regime,
which occurs in strongly localized systems, it should be possible to derive an effective medium
theory, which has only one effective parameter, the characteristic hopping length. If the system
is not very strongly localized, but the wavefunctions are widely spread, the transitions do not
necessarily happen between nearest neighbours only. In such systems with widely spread
wavefunctions, often an activated behaviour is also observed, although these systems are not
NNH like in the sense used above. However such systems, although interesting in their own
right, are not within the scope of the present paper. We would like to note that in the variable-
range-hopping (VRH) regime the situation is in principle similar.

The aim of the present paper is to find answers to the questions raised above. Starting
with the transport equations for hopping electrons in the presence of Hubbard interaction we
derive a random resistor network with two nodes per site, which can also be used for the
investigation of hopping transport problems in alternating electric fields. By doing so, we
restrict the consideration to the NNH regime and focus on the strongly localized regime. To
answer the question under which conditions the nodes of the network can be joint, that is under
which conditions the random resistor network with two nodes per site is equivalent to a random
resistor network with one node per site, we generalize the standard effective medium theory
in such a way that it can also be used for the investigation of such systems, and apply it to the
investigation of the dynamical conductivity in the whole range of frequencies.
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2. The model

We consider localized electrons interacting via Hubbard repulsion and with the phonon system.
The Hamilton operator of the electron system is given by

He =
∑
m,σ

(εm + eE(t)Rm)a+
mσ amσ +

∑
mm′σ

Jmm′�mm′(t)a+
mσ am′σ +

U

2

∑
mσ

a+
mσ amσ a+

m−σ am−σ .

(1)

The operators a+
mσ (amσ ) are electron creation (annihilation) operators. They create localized

electrons with spin σ at site m with position vector Rm , site energy εm , and localization radius
α−1. Both the positions of the sites and their site energies are random quantities. The coupling
between the electron and phonon system is provided by the resonance integral

Jmm′ = J0 exp(−α|Rmm′ |) (2)

and the multi-phonon operator �mm′ (t) [14]. The impact of the electron system on the phonon
system is neglected. Accordingly, the evolution of the multi-phonon operator is governed by
the Hamilton operator

Hph =
∑

q

h̄ωq(b
+
q bq + 1

2 ) (3)

only, where b+
q (bq) are creation (annihilation) operators for acoustic phonons with momentum

q , and h̄ωq is the energy for a phonon with wavevector q .

3. The transport equations

In order to investigate transport we have to derive transport equations for such systems in
the strongly localized regime. To this end it is sufficient to focus on the expected values
of the one-particle density matrix in the non-interacting situation, since products of particle
number operators can safely be Hartree–Fock decoupled in this case. In the presence of
the Hubbard interaction, however, Hartree–Fock decoupling cannot be applied to products of
particle number operators at the same site, but only to products of particle number operators
at different sites, since the latter are only coupled by the resonance integral and the electron–
phonon interaction, and tunnelling can be ignored in the hopping regime. Consequently, in
deriving the transport equations we have to take into account that every site can be either empty,
double occupied, or single occupied with an electron in a certain spin direction. To take into
account this fact it is convenient to introduce the expection values of the Hubbard operators

f (0)
m = 〈(1 − nm↑)(1 − nm↓)〉, (4)

f (2)
m = 〈nm↑nm↓〉, (5)

fm↓ = 〈nm↓(1 − nm↑)〉, (6)

fm↑ = 〈nm↑(1 − nm↓)〉, (7)

where nmσ is the particle number operator for particles on site m with spin σ , and to derive
transport equations for these quantities [15]. For weak electron–phonon interaction such
equations were first derived in [15], and the equations derived there are used in this paper.
They have the form

d f (2)
m

dt
=

∑
nσ

[ fnσ fm−σ W (SS)
nm + f (2)

n fm−σ Wnm − f (2)
m f (0)

n W (DU)
mn − f (2)

m fnσ Wmn], (8)
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d f (0)
m

dt
=

∑
nσ

[ fmσ f (0)
n Wmn + fmσ fn−σ W (SS)

mn − fnσ f (0)
m Wnm − f (2)

n f (0)
m W (DU)

nm ], (9)

d fmσ

dt
=

∑
nσ

[ fnσ f (0)
m Wnm + f (2)

n f (0)
m W (DU)

nm + f (2)
m f (0)

n W (DU)
mn + f (2)

m fnσ Wmn

− fmσ f (0)
n Wmn − fmσ fn−σ W (SS)

mn − fn−σ fmσ W (SS)
nm − f (2)

n fmσ Wnm]. (10)

Here the quantities Wnm , W (DU)
nm and W (SS)

nm are the transition probabilities for a hop from a
single occupied site to an unoccupied site, for a hop from a double occupied to an unoccupied
site, and for a hop from a single occupied site to a single occupied site, respectively. Owing
to the principle of detailed balance these quantities satisfy the relationships

Wmn

Wnm
= exp(−βVnm), (11)

and
W (DU)

mn

W (SS)
nm

= exp(−β(Vnm − U)), (12)

where Vnm = εn − εm + eERnm . Since the Hubbard-interaction strength is independent of the
site index, the transition probabilities for jumps between single occupied and unoccupied sites
are the same as those for jumps between double occupied and single occupied sites. In order
to calculate the ohmic conductivity we linearize the set of equations (8)–(10) with respect to
small deviations from equilibrium due to the electric field. To do so, we first note that the
expection values of the Hubbard operators are not independent of each other but satisfy the
relationship

f (0)
m + f (2)

m + fm↑ + fm↓ = 1, (13)

since every site is either empty, single occupied or double occupied. Moreover, if the initial
conditions are chosen in such a way that the initial particle distribution is independent of
the spin direction, the probability of finding a single occupied site is also independent of the
spin direction. Accordingly, only two of the quantities f (0)

m , f (2)
m , and fmσ are independent

of each other. Consequently, small deviations from equilibrium can be characterized by two
generalized electrochemical potentials U (1)

m and U (2)
m , which can be introduced according to

the relationships

f (0)
m (t) = f (0)(1 + βδ(0)

m (t)), (14)

f (2)
m (t) = f (2)(1 + βδ(2)

m (t)), (15)

and

f↑(t) = f (1 + βδm↑(t)), (16)

where

δ(0)
m (t) = −(1 − f (0))(U (1)

m (t) + eE(t)Rm) − f (2)(U (2)
m (t) + eE(t)Rm), (17)

δ(2)
m (t) = f (0)(U (1)

m (t) + eE(t)Rm) + (1 − f (2))(U (2)
m (t) + eE(t)Rm), (18)

and

δm↑(t) = f (0)(U (1)
m (t) + eE(t)Rm) − f (2)(U (2)

m (t) + eE(t)Rm). (19)

Here

f (2) = e−β(U−2µ)

1 + 2eβµ + e−β(U−2µ)
, (20)

f (0) = 1

1 + 2eβµ + e−β(U−2µ)
(21)
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and

f = eβµ

1 + 2eβµ + e−β(U−2µ)
, (22)

are the expection values of the Hubbard operators in equilibrium. In writing down the
expressions (20)–(22) we have taken into account that we are only interested in investigating
the NNH regime, where the random distribution of the sites in space is the only source of
disorder, since the spread of the site energies of the first occupied states can be neglected when
compared to the temperature.

If we use the equations (14)–(19) to linearize the transport equations then we find that the
transport equations take the form

2∑
j=1

sCi j(U
( j)
m + Lk

m) =
2∑

j=1

∑
n

2�i j
mn(U

( j)
n − U (i)

m ), (23)

where C11 = f (0)(1 − f (0)), C22 = f (2)(1 − f (2)), C12 = f (2) f (0), Lk
m = e(ER)m , and

s = −iω is the frequency of the external electric field. The quantities

�
i j
mm′ = Wi j g(|Rmm′ |), (24)

with

g(R) = exp(−2αR) (25)

and W11 = f f (0)ν, W22 = f f (2)ν, W12 = f (2) f (0)ν ′ are the transition rates corresponding
to the transition probabilities. The quantities ν and ν ′ in the transition rates are the attempt-
to-escape frequencies. While in all other investigations in the literature it has been assumed
that ν = ν ′, in our paper we take into account that the attempt-to-escape frequencies are, in
principle, different from each other. The reason for this is simply that the attempt-to-escape
frequencies characterize the ability of the phonon to induce the transition. With increasing
Hubbard-interaction strength, however, it becomes more and more difficult for the phonon to
bridge the gap between the upper and the lower Hubbard band. Accordingly, ν ′ tends to zero
with increasing Hubbard-interaction strength.

To calculate the current j(s) we first have to solve equation (23) and insert the solution
into the equation

j(s) = βes

V

∑
m

Rm

2∑
k,l=1

Clk(U
k
m + e(ERm)). (26)

Here V is the sample volume.

4. The random resistor network analogue

A natural question that arises is the question of whether equation (23) can be translated into
the language of the random-resistor network, since the application of percolation theory, one
of the most powerful techniques in investigating hopping transport problems, is based on
this interpretation. So far, percolation theory has been applied in most investigations on the
impact of the Hubbard interaction on hopping transport. To our knowledge, most papers in
the literature focus on dc properties in the VRH regime, so that the question arises of what the
random resistor network looks like for finite frequencies. In addition we would like to mention
that even in the dc limit there seems to be some confusion about the answer to this question:
while some authors use random resistor networks with two nodes per site other authors use
networks with one node per side, so that the question arises under which conditions are both
approaches equivalent.



1724 O Bleibaum et al

Z(s)

C

C

20

02

–eERm

–eERm

–eERm′

–eERm′

Y (1)

(2)

mm′

mm′

K
Z(s)

C20

C02

Y

Kmm′mm′

Figure 1. Random-resistor network analogue for the transport equations in the NNH regime. A
typical node in the interior of the network. The capacitors are given by C02 = e2β f (0)(1 − f (0) +
f (2)), C20 = e2β f (2)(1− f (2)+ f (0)). The mutual electrostatic induction is Z(s) = −se2β f (0) f (2),
and the resistors are Y (1)

mm′ = (2e2β�11
mm′ )−1, Y (2)

mm′ = (2e2β�22
mm′ )−1, and Kmm′ = (2e2β�12

mm′ )−1.

To give equation (23) a random-resistor network interpretation we write it in the form

sC02(U
(1)
m + e(ERm)) + Z(s)(U (1)

m − U (2)
m )

=
∑

n

2e2β�11
nm(U (1)

n − U (1)
m ) + 2e2β�12

nm(U (2)
n − U (1)

m ) (27)

Z(s)(U (2)
m − U (1)

m ) + sC20(U
(2)
m + e(ERm))

=
∑

n

2e2β�12
mn(U

(1)
n − U (2)

m ) + 2e2β�22
nm(U (2)

n − U (2)
m ). (28)

Here C02 = e2β f (0)(1− f (0)+ f (2)), C20 = e2β f (2)(1− f (2)+ f (0)), and Z(s) = −se2β f (0) f (2).
In this representation the quantities C20 and C02 can be interpreted as ordinary capacitors, and
the quantities (e2β�

i j
mn)

−1 as ordinary resistors. The quantity Z(s), however, is an element with
a frequency dependence that agrees with that of an ordinary capacitor with negative capacity.
The negative capacitor can be considered as mutual electrostatic induction. A typical node in
the interior of the random resistor network, described by equations (27) and (28), is depicted
in figure 1. The sites at the boundary of the random resistor network are connected to the
electrodes, as depicted in figure 2. In this picture U = −eE L, where L is the length of the
sample. In addition to the situation depicted in figure 2 there is also one electrode which is
grounded. Since the sites at the boundaries are connected to the electrodes the generalized
electrochemical potentials at these sites agree with each other. Therefore, their lower and
upper nodes are connected.
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Y

Y

K

K

mm′

mm′

mm′

mm′

(1)

(2)

Z(s)

CC

C 20

02

U

Figure 2. Node for a site connected to the electrode (right wall). All sites connected to the electrode
have the same electrochemical potential, the potential of the electrode. In this picture the potential
of the electrode is U .

An important question is whether the upper and lower nodes of the network can be joined.
In this case the network can be treated like an ordinary Miller–Abraham network with one
node per site. The answer to this question depends on the Hubbard-interaction strength, on the
filling of the system, on frequency, and on the quantity of interest. If we are only interested in
calculating the dc we can use the symmetry of the quantities �12

nm with respect to exchange of
the site indices to show that for s = 0 the solution with the correct boundary condition is given
by U 1

m = U 2
m = Um , where the quantities Um satisfy the Miller–Abraham network equation∑

n

�mn(Um − Un) = 0, (29)

where �mn = �11
mn + �22

mn + 2�12
mn . The solution to this equation is independent of the Hubbard-

interaction strength. Accordingly, the dc conductivity σU in the presence of the Hubbard
interaction is related to dc conductivity in the absence of the Hubbard interaction σ0 by the
simple relationship

σU = CU

C0
σ0, (30)

where CU = (C11 + C22)ν + 2C12ν
′ and C0 = CU=0. The factor CU /C0 leads to a reduction

in the conductivity, which depends on the filling of the system and on the Hubbard-interaction
strength (see figure 3). The largest impact of the interaction is at half-filling (z = 1), where

CU

C0

∣∣∣∣
z=1

= 2

1 + exp(βU/2)
(31)

if ν = ν ′. If, however, s �= 0 the random-resistor network can only be reduced to a Miller–
Abraham network if ν = ν ′. In this case equation (23) takes the well known form

s(Um + e(ERm)) =
∑

n

νg(|Rnm|)(Un − Um). (32)
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Figure 3. The ratio CU /C0 dependence on the filling z for different Hubbard-interaction strengths.
The curves are drawn for y = exp(−βU) = 1 (1), y = 0.75 (2), y = 0.5 (3), y = 0.25 (4) and
y = 0.1 (5).

Accordingly, equation (30) also holds for all frequencies of the applied external electric field,
if only ν = ν ′.

If we investigate the reason for this simplification further, however, we find that this
property is not of general validity. If ν �= ν ′ then the two nodes of the random resistor
network cannot be joint, unless the system is half-filled. Accordingly, if we only look at the
conductivity it is the difference between ν and ν ′ which makes the physics different from that
in the non-interacting situation.

If we try to extend the random-resistor network interpretation to the VRH regime, and
use instead of the quantities (24) those appropriate to VRH, then the situation becomes even
more obscure. In this case we face the problem that in the VRH regime the quantities �

i j
mn are

only symmetric with respect to simultaneous exchange of site indices (m and n) and equation
indices (i and j ) [15]. Therefore, they can only be interpreted as ordinary resistors in an
abstract space. A point in this space is a position vector and an equation index. Due to this
lack of symmetry we cannot join the upper and the lower node of the network, even if we
would like to restrict the consideration to the dc conductivity, unless the Hubbard-interaction
strength is either zero or large compared to the band of first occupied states. Therefore, it is
a priori not clear whether or not those results, which have been obtained from random-resistor
networks, were obtained with one node per site, or not. This question is investigated further
below for the NNH regime.

5. Effective-medium approximation

The fact that at finite frequencies the nodes of the network cannot be joined to each other unless
ν = ν ′ raises the question of what the impact of the Hubbard interaction on the dynamical
conductivity is. In order to answer this question we use the standard effective medium method
of [22] in the formulation of [23]. In this method the disordered system is modelled on
an ordered lattice with effective bonds. For simplicity a cubic lattice with lattice spacing
a2 = 〈R2〉 is used, where the brackets symbolize the configuration average. The bonds are
chosen in such a way that the replacement of an arbitrary ordered bond by a disordered one
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gives vanishing corrections to the current. In order to calculate the average we use the Poisson
distribution

dp(R) = nγd

2
Rd−1 exp

(
−γdn Rd

2d

)
. (33)

which yields for d = 2〈R2〉 = 4/(πn) and for d = 3〈R2〉 = �(5/3)(9/2πn)2/3.
To use the philosophy outlined above we first put the system (23) on the lattice. On the

lattice it takes the form

sC11(U
(1)
m + e(ERm)) + sC12(U

(2)
m + e(ERm)) =

∑
g

2�11
m+g,m(U (1)

m+g − U (1)
m )

+ 2�12
m+g,m(U (2)

m+g − U (1)
m )

sC21(U
(1)
m + e(ER)m) + sC22(U

(2)
m + e(ERm)) =

∑
g

2�21
mm+g(U

(1)
m+g − U (2)

m )

+ 2�22
mm+g(U

(2)
m+g − U (2)

m ). (34)

Here the summation is restricted only to nearest neighbours. Due to the random distribution of
the sites in the original problem the transition rates �

i j
mm+g are fluctuating quantities. However,

since in reality the distance between the sites is the only fluctuating quantity in the problem,
the distribution function for these quantities is entirely determined by the distribution function
for the site separations, that is by the distribution function for the quantities g(|Rmn|) (see
equation (25)). To incorporate this effect we replace the fluctuating quantities g(|Rmn|) by an
effective quantity g which, in the spirit of the effective medium theory, is frequency dependent
and the same for all bonds. Due this replacement the transition rates become independent of
the indices m and g and therefore the current can be readily calculated. Doing so, we obtain

j(s) = βe2nE(s)〈R2〉2CU g(s), (35)

where n is the concentration of sites. To calculate g, we replace one bond, the (nn + g)-bond,
by a disordered one, that is we replace g by g(|Rnn+g|) for a fixed n and g. Thereafter we
require that this replacement does not affect the current. This requirement leads to one self-
consistency equation (see equation (A.8), appendix) for the calculation of g(s), which can be
solved both in the limit of high frequencies and in the limit of low frequencies.

For high frequencies, that is for frequencies s satisfying νg(s)/s � 1, the self-consistency
equation reduces to

g(s) = 2 f (2) f (0)
〈
R2 g(R)

sτ2+g(R)

〉
+ f ( f (0) − f (2))2

〈
R2 g(R)

sτ1+g(R)

〉
〈R2〉( 2 f (2) f (0)

sτ2
+ f ( f (0)− f (2))2

sτ1

) . (36)

The remarkable fact in this expression is the occurrence of the two relaxation times

1/τ1 = 2ν (37)

and

1/τ2 = 2(2 f ν + ( f (0) + f (2))ν ′). (38)

These two relaxation times enter the current. If we simply insert equation (38) into (35) we
obtain

σU (s) = ne2βs

d

[
f ( f (0) − f (2))2

f (0) + f (2)

〈
R2g(R)

1 + sτ1g(R)

〉
+

2 f (2) f (0)

f (0) + f (2)

〈
R2g(R)

1 + sτ2g(R)

〉]
. (39)

Accordingly, for very high frequencies (sτ1/2 � 1) the conductivity becomes independent of
frequency, as in the non-interacting situation. For sτ1/2 � 1, however, two modes are present
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in the current. This sets the situation apart from that of non-interacting charge carriers where
only one relaxation time is present at high frequencies. In this regime we obtain

σU (s) = A′
dn2e2β

(2α)d+2

[
f ( f (0) − f (2))2

f (0) + f (2)
ρd+2

c1 +
2 f (2) f (0)

f (0) + f (2)
ρd+2

c2

]
(40)

where ρci = − ln(sτi ), and A′
3 = 4π/15, A′

2 = π/4 and A′
1 = 1/3.

In order to obtain the frequency dependence of the conductivity we simply have to replace
s by −iω. Accordingly, the real part of the conductivity satisfies the equation

Re σU (ω) = A′
dn2e2β

(2α)d+2

[
f ( f (0) − f (2))2

f (0) + f (2)
lnd+2(1/ωτ1) +

2 f (2) f (0)

f (0) + f (2)
lnd+2(1/ωτ2)

]
. (41)

The expression obtained in this way differs from the standard result by Pollak and Geballe [24]
for non-interacting particles in the occurrence of two characteristic relaxation times. From the
physical point of view the difference between these two relaxation times results from the fact
that transition between sites within the same band and transitions between the band of first
occupied states and the band of second occupied states occur with different attempt-to-escape
frequency. If, however, we look at equation (41) in this way then we notice that obviously one
of the characteristic frequencies in equation (41) is wrong, since at half-filling only transitions
between the upper and the lower Hubbard band should be important. Accordingly, the result
for the current should only depend on ν ′. The effective medium theory becomes exact in
the limit of large frequencies. Therefore, we expect that this discrepancy is produced by the
Hartree–Fock decoupling, which has been used in the derivation of the rate equations in [15],
and because of this only the average of the occupancy of the sites is taken into account.

For low frequencies, that is for frequencies s satisfying s � νg, the self-consistency
equation reduces to

0 =
〈

R2 g(R) − g

g(R) + g(d − 1 + sτ )

〉
. (42)

In contrast to equation (36) this equation contains only one characteristic frequency. It agrees
completely with the self-consistency equation for non-interacting particles [23]. Only the
relaxation time τ is different. In equation (42) it is given by

τ = CU

2
∑

i j Wi j g(0)

∑
k

1

φ(k)
, (43)

where

φ(k) =
∑

g

(1 − cos(kg)). (44)

For s = 0 equation (42) yields

g(s = 0) = exp(−ηdαn−1/d )

d − 1
, (45)

where η3 = 1.669 and η2 = 1.879. For non-zero s equation (42) can be cast into the form
g(s)

g(0)
ln

g(s)

g(0)
= s

ω0
, (46)

where the characteristic frequency

ω0 = n1/d g(0)

α

d(d − 1) ln d
d−1

ηdξd

2 f ( f (0) + f (2))ν + 4 f (2) f (0)ν ′

2 f ( f (0) + f (2)) + 4 f (2) f (0)
. (47)

For d = 3 the number ξ3 = 0.253. In order to obtain the frequency dependence of the
conductivity we merely have to replace the Laplace frequency s by −iω in equation (47).
The equation obtained in this way is the same as for non-interacting particles. Its physics is
described extensively in [14].
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6. Conclusions

Our investigations have shown that even for finite frequencies the transport equations in the
NNH regime in the presence of the Hubbard interaction can be cast into the form of a generalized
random resistor network. The random resistor network in question has two nodes per site and
consists of random resistors and capacitors. In contrast to the non-interacting situation as well
as capacitors with positive capacity, capacitors with negative capacity also have to be taken
into account. The latter quantities can be considered as mutual electrostatic induction.

From the physical point of view the differences between the random resistor network
derived in this paper and the traditional Miller–Abraham network result from the fact that in
the presence of the Hubbard interaction there are more degrees of freedom which have to be
taken into account than in the non-interacting situation. These additional degrees of freedom
describe excitations of the system which cannot be produced in the non-interacting situation.
As such there are deviations of the probability to find double occupied sites in the system from
its equilibrium value. Since there is only one conserved quantity in this system, the particle
number, and the number of single occupied sites is not conserved, the propagation of excitations
is described by relaxation modes. In our random-resistor network this fact manifests in the
occurrence of capacitors with negative capacity. These capacitors connect the upper and the
lower node at the same site, and thus are important if the generalized electrochemical potentials
at the same site are different from each other. Clearly, further investigation of the diffusion
and decay of such excitations is very important for the development of an understanding of
the impact of the Hubbard interaction on the non-equilibrium properties of strongly localized
systems, since it is the ability of the interacting system to propagate excitations which sets
it apart from the non-interacting one. Our random-resistor network can be used for studying
some of the properties of such excitations if appropriate initial conditions are used.

While the excitations are very important for the non-equilibrium properties of the system,
we cannot expect them to influence strongly the conductivity in the ohmic approximation at
low frequencies of the external electric field, since excitations have first to be produced before
they can be affected by an external electric field. Accordingly, excitations do not affect the
dc conductivity in the dc limit. This conclusion also holds at finite frequencies if ν = ν ′.
If the attempt-to-escape frequencies differ from each other our random-resistor network for
the calculation of the conductivity does not reduce to the ordinary Miller–Abraham network
exactly, but the ordinary Miller–Abraham network describes the situation adequately in a
large range of frequencies, including the range of lowest frequencies and the multiple-hopping
regime. Only in the high frequency limit does the fact that the network has two nodes per
site become important. In this limit the relaxation modes describing the excitations manifest
themselves in a second pole of the generalized diffusion function. The second pole results from
the fact that the transitions between the upper and the lower Hubbard band and the transition
within a given Hubbard band occur with different attempt-to-escape frequency. However, the
characteristic frequency for jumps between the lower and the upper Hubbard band, as found by
direct calculation from the linearized rate equations, is obviously incorrect. Since the effective
medium theory is exact in the limit of large frequencies (the two-site model yields the same
result) we expect that this discrepancy is produced by the Hartree–Fock decoupling, which
has been used in the derivation of the rate equations in [15]. Thus, it is doubtful that the
equations derived in [15] also apply to the high frequency limit. Further investigation of the
reason for this discrepancy might be useful, especially as by investigating the high frequency
conductivity further information about the properties of the Hubbard gap can be obtained.
The Hubbard gap in the strongly localized regime has been observed, e.g., in the experiments
of [7].
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Despite the fact that we have focused in our investigation on the NNH regime the random
resistor network derived in this paper can also be applied to the VRH regime. Since, however,
in the VRH regime the transition rates connecting sites in different Hubbard bands are not
symmetric with respect to exchange of the site indices, but only symmetric with respect to
simultaneous exchange of site and equation indices, the transition rates connecting the upper
and the lower Hubbard band can only be considered as ordinary resistors in an abstract space.
A point in this space is determined by a site index and an equation index. In ordinary space
these quantities cannot be considered as ordinary resistors, but only as unipolar elements. The
latter fact renders the application of the percolation theory to the VRH regime difficult.

Appendix. On the derivation of the self-consistency equation

In order to derive the self-consistency equation it is convenient to use the Green function
formalism. The Green function F of equation (34) satisfies the equation

2∑
k=1

sCik Fkj
m′m = δm′mδi j +

2∑
k=1

∑
n

[�ik
m′n�m′n Fkj

nm − �ik
m′n�m′n Fkj

m′m], (A.1)

where �mn = 1 for Rm = Rn +l, where l is a unit-lattice vector, and �mn = 0 otherwise. With
the help of the Green function the equation for the calculation of the current can be written in
the form

j(s) = βs2e2

V

∑
m′m

2∑
k,l, j,i=1

Rmm′(E(s)Rm′)Clk Fkj
m′mC ji . (A.2)

Due to the law of probability conservation and the principle of detailed balance the Green
function satisfies the sum rules

s
2∑

j,k=1

∑
m

Fi j
m′mC jk = 1 (A.3)

and

s
∑
m′

2∑
ik=1

Cik Fkj
m′m = 1. (A.4)

According to the assumptions of the effective medium theory the configuration average of the
Green function F, F̄ , satisfies the equation∑

k

sCik F̄k j
m′m = δm′mδi j +

∑
k,n

[�̄ik
m′n�m′n F̄k j

nm − �̄ik
m′n�m′n F̄k j

m′m], (A.5)

where �̄ik
mn differs from �ik

mn in that the quantities g(|Rmn|) in the latter rates are replaced by
g(s). To determine g(s) we use the philosophy of the effective-medium approximation. We
first replace one bond by a random one. This replacement amounts to the introduction of a new
bond of strength δ�ik

m′m�mm′ = 2Wik(g(l) − g(s))�mm′ . In this approximation the equation
for the Green function takes the Form

F = F̄ + F̄T F̄, (A.6)

where we have used a matrix notation for brevity. The T -matrix satisfies the equation

T = δ� + δ� F̄T . (A.7)
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We now require that the introduction of the additional random bond does not yields corrections
to the conductivity. This is the case, if

0 =
∑

i j

∑
mm′

〈R2
mm′ T

i j
mm′ 〉. (A.8)

Equation (A.8) is the self-consistency equation for the calculation of g(s). Due to the matrix-
structure equation (A.8) is difficult to handle, although further calculations are elementary.
However, due to their length they are not presented here. We therefore restrict the discussion
to the further approximations used.

For high frequencies, that is for �̄/s � 1, the second term on the right-hand side of
equation (A.5) is negligible, so that the equation for the Green function simply takes the form∑

k

sCik F̄k j
m′m = δm′mδi j . (A.9)

If we use this approximation then the self-consistency equation (A.8) reduces to (36).
For low frequencies, that is for �̄/s � 1, the Green function can be expanded with respect

to this parameter. To first order this expansion yields

F̄(s) ≈ F̄(0) − s F̄C F̄ . (A.10)

To obtain equation (42) we use the approximation (A.10) in calculating the T -matrix according
to equation (A.7). It should be mentioned that also in this case the inversion of the matrices
leads, strictly speaking, to a denominator quadratic with respect to s/(�̄), and therefore also
to two modes. However, since s/�̄ � 1 the difference between these modes is small, and
therefore only the linear terms are retained.
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